# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034 

M.C.A. DEGREE EXAMINATION - COMPUTER APPLICATION

FIRST SEMESTER - APRIL 2010
MT 1902 - MATHEMATICS FOR COMPUTER APPLICATIONS

Date \& Time: 30/04/2010 / 1:00-4:00
Dept. No.
Max. : 100 Marks

## Part A (Answer ALL questions)

$2 \times 10=20$

1. Define Lattice homomorphism between two lattices.
2. With usual notations prove that (i) $a * a=a$ (ii) $a * b=b * a$.
3. Define context free grammar.
4. What is the difference between deterministic finite automata and non-deterministic finite automata?
5. Let $G=(N, T, P, S)$, where $N=\{S\}, T=\{a\}, P:\{S \rightarrow S S, S \rightarrow a\}$. Check whether $G$ is ambiguous or unambiguous.
6. Give a deterministic finite automata accepting the set of all strings over $\{0,1\}$ containing 3 consecutive 0's.
7. If R and S be two relations defined by $R=\left\{\frac{\langle x, 2 x\rangle}{x \in I}\right\}$ and $S=\left\{\frac{\langle x, 7 x\rangle}{x e I}\right\}$, then find $\mathrm{R}^{\mathrm{a}} \mathrm{S}, \mathrm{R}^{\mathrm{a}} \mathrm{R}$ and $\mathrm{R}^{\mathrm{o}} S^{\mathrm{o}} \mathrm{R}$.
8. Let $X=\{1,2,3,4\}$ and $R=\{\langle 1,1\rangle,\langle\mathbf{1}, \mathbf{4}\rangle\langle 4, \mathbf{1}\rangle\langle 4,4\rangle,\langle 2,2)\langle 2,3\rangle,(3,2\rangle,\{3,3\rangle$. Write the matrix of of R and sketch its graph.
9. Define ring with an example.
10. State Kuratowski's theorem.

Part B (Answer ALL questions)
11. (a) Show that De Morgan's laws given by $(a * b)^{t^{\prime}}=a^{\prime}\left(\mathbf{b}^{\prime}\right.$ and $\left(a(b)^{\prime}=\mathbf{a}^{\prime} * \mathbf{b}^{\prime}\right.$ hold in a complemented, distributive lattice.
(OR)
(b) Let $\langle L, \leq\rangle$ be a lattice. For any $a, b, c \in L$, prove the following distributive inequalities: $a((b * c) \leq(a(b) *(a(c)$ and $a *(b) \geq(a * b) C(a * c)$.
12. (a) Show that $L(G)=\left\{\frac{a^{n} b^{m} a^{m} b^{n}}{n}, m \geq 1\right\}$ is accepted by the grammar $G=(N, T, P, S)$ where $N=\{S, A\} T=\{a, b\}, P$ consists of the following productions: $S \rightarrow a S A, S \rightarrow$ $\mathrm{aZA}, \mathrm{Z} \rightarrow \mathrm{bZB}, \mathrm{Z} \rightarrow \mathrm{bB}, \mathrm{BA} \rightarrow \mathrm{AB}, \mathrm{AB} \rightarrow \mathrm{Ab}, \mathrm{bB} \rightarrow \mathrm{bb}, \mathrm{bA} \rightarrow \mathrm{ba}$.
(OR)
(b) Let the grammar $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}, \mathrm{S})$ where P consists of $\mathrm{S} \rightarrow \mathrm{aAS}, \mathrm{S} \rightarrow \mathrm{a}$, $\mathrm{A} \rightarrow \mathrm{SbA}, \mathrm{A} \rightarrow \mathrm{SS}, \mathrm{A} \rightarrow \mathrm{ba}$. For the string aabbaa find a
(i) leftmost derivation
(ii) rightmost derivation
(iii) derivation tree.
13. (a) (i) Define deterministic finite state automata.
(ii) Draw the state diagram for the deterministic finite state automata,
$\mathrm{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where $\mathrm{Q}=\left\{q_{0}, q_{1}, q_{\mathbf{2}}, q_{\mathbf{n}}\right\}, \Sigma=\{\mathrm{a}, \mathrm{b}\}, \mathrm{F}=\left\{q_{\mathbf{0}}\right\}$ and $\delta$ is defined as follows:

| $\delta$ | a | b |
| :---: | :---: | :---: |
| $q_{0}$ | $q_{2}$ | $q_{1}$ |
| $q_{1}$ | $q_{\mathrm{z}}$ | $q_{0}$ |


| $q_{2}$ | $q_{0}$ | $q_{2}$ |
| :--- | :--- | :--- |
| $q_{3}$ | $q_{1}$ | $q_{2}$ |

Check whether the string bbabab is accepted by M .
(OR)
(b) Given an non-deterministic finite automaton which accepts L. Prove that there exists a deterministic finite automaton that accepts $L$.
14. (a) (i) Write short on Hasse diagram.
(ii) Let $X=\{2,3,6,12,24,36\}$ and relation $\leq$ be such that $x \leq y$ if $x$ divides $y$. Draw the Hasse diagram of $\langle X, \leq\rangle$.
(4+4)
(OR)
(b) (i) Show that $n^{3}+2 n$ is divisible by 3 using principle of mathematical induction.
(ii) If the permutations of the elements of $\{1,2,3,4,5\}$ be given by

$$
\begin{align*}
& \alpha=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 1 & 4 & 5
\end{array}\right), \beta=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 5 & 4
\end{array}\right), \gamma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 3 & 1 & 2
\end{array}\right), \quad \delta=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 5 & 4
\end{array}\right) \text {, then find } \\
& \alpha \gamma, \beta \delta \cdot \alpha^{-1} \beta_{r} \gamma^{-1} \beta \delta . \tag{4+4}
\end{align*}
$$

15. (a) Prove that there is a one- to-one correspondence between any two left cosets of H in G .
(OR)
(b) (i) If G is a graph in which the degree of every vertex is atlest two, then prove that G contains a cycle.
(ii) Prove that the kernel of a homomorphism g from a group $(G, \boldsymbol{*}\rangle$ to $\langle H, \boldsymbol{\Delta}\rangle$ is a subgroup of $\langle G, *\rangle$.

## Part C (Answer ANY TWO questions)

16.(a) Let G be ( $\mathrm{p}, \mathrm{q}$ )graph, then prove that the following statements are equivalent:
(i) G is a tree. (ii) Every two vertices of G are joined by a unique path (iii) G is connected and $p=q+\mathbf{1}$ (iv) $G$ is acyclic and $p=q+1$.
(b) Let H be a subgroup of G . Then prove that any two left cosets of H in G are either identical or have no element in common.
17. (a) Let $\left\langle B, *, C,{ }^{\prime}, 0,1\right\rangle$ be a Boolean Algebra. Define the operations + and $\cdot$ on the elements of $B$ by,
$a+b=\left(a * b^{\text {tr }}\right)\left(\left(\mathrm{a}^{\mathrm{tr}} * \mathbf{b}\right)\right.$
$a \cdot \mathbf{b}=\mathbf{a} * \mathbf{b}$. Show that $\langle B,+, \cdot 1\rangle$ is a boolean ring with identity 1 .
(b) Prove that every chain is a distributive lattice.
$(15+5)$
18. (a) If $G=(N, T, P, S)$ where $N=\{S, A, B\}, T=\{a, b\}$, and $P$ consists of the following rules:
$\mathrm{S} \rightarrow \mathrm{aB}, \mathrm{S} \rightarrow \mathrm{bA}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{A} \rightarrow \mathrm{aS}, \mathrm{A} \rightarrow \mathrm{bAA}, \mathrm{B} \rightarrow \mathrm{b}, \mathrm{B} \rightarrow \mathrm{bS}, \mathrm{B} \rightarrow \mathrm{aBB}$. Then prove the following:
(1) $S \stackrel{\ddot{\Delta}}{\Rightarrow}$ wiff w consists of an equal number of a's and b's
(2) $\mathrm{A} \stackrel{*}{\Rightarrow}$ wiff w has one more a than it has b ' s .
(3) $\mathrm{B} \stackrel{\dot{\circ}}{\Rightarrow} \mathrm{w}$ iff w has one more b than if has a's
(b) State and prove pumping lemma.
$(10+10)$

